ASCON-Based Lightweight
Cryptography Standards for
Constrained Devices

Authenticated Encryption, Hash and Extendable Output
Functions

Michelle Lau
11917662

A paper presented for a Seminar to Security in
Software Engineering and Internet Computing

Institute of Information Systems Engineering
University of Technology Vienna
Austria
July 20, 2025

Abstract

Cryptography plays a crucial role in today’s technology. Not only does it
have to be secure, but also efficient so that devices with limited resources - such
as IoT devices - can utilize and implement secure cryptographic algorithms.
The family of Ascon algorithms, designed by Dobraunig, Eichlseder, Mendel
and Schléffer is a new standard chosen in the NIST Lightweight Cryptography
competition (2019-2023) [nist17]. The NIST special publication [asc24], which
this paper is based on, includes Authenticated Encryption, Hash, as well as
extendable output functions.

1 Introduction

The importance of cryptography is vital in almost all digital ecosystems. Without it,
maintaining data security and privacy would not be possible in today’s digital world.
The practice of cryptography enables different ways of securing communication by en-
crypting and decrypting data with their corresponding algorithm. There exist many
conventional standards of cryptographic algorithms (such as the Secure Hash Standard
SHS [shs15] and the Advanced Encryption Standard AES [aes01]); however, not all
of them consider the limited capacity of constrained devices - like Internet of Things
(IoT) devices, embedded systems, or low-power sensors.

As a viable alternative for such devices, the Ascon family provides a set of algorithms
that use symmetric cryptography and lightweight permutations to achieve secure ci-
phering of information even in resource-limited environments.

The family introduces new standards including the Authenticated Encryption with As-
sociated Data Ascon-AEAD128, the hash function Ascon-Hash256, Extendable Output
Function (XOF) Ascon-X0F128 and the customized version of the Extendable Output
Function (CXOF) Ascon-CX0F128:

1. Ascon-AEAD128: This nonce-based algorithm provides a lightweight solution to
ciphering a message with associated data and provides 128-bit security in the
single-key setting.

2. Ascon-Hash256: This hash function converts an input message into a 256-bit
digest with a security of 128 bits.

3. Ascon-X0F128: This XOF is similar to the Ascon-Hash256 function, with the
difference that the output size of the digest can be customized by the user.

4. Ascon-CX0F128: This CXOF provides further customization by taking a random
input string chosen by the user to be used in the computation of the custom
output length.

The family of Ascon algorithms utilizes a symmetric-key cryptography scheme,
which means that the same key is used in encryption as well as decryption. Further-
more, a single lightweight permutation using sponge/duplex [spngl2] constructions is
used, enabling an efficient and simple implementation of the algorithms.

The main features of Ascon include:

e Multiple functionalities: All introduced algorithms (Ascon-AEAD128,
Ascon-Hash128, Ascon-X0F128 and Ascon-CX0F128) of the Ascon family utilize
the same permutation, which allows a more unified, consistent and compact
implementation.

e Online and single pass: Ascon is able to start ciphering data immediately,
without needing to know the full size of the input in advance. It also only needs
to go through the data once to complete encryption and decryption, since there
is no need for multiple rounds of reading or buffering. This ensures that the
algorithms stay efficient, lightweight and secure.

e Inverse-free: Since no inverse permutations are necessary (unlike other cryp-
tographic algorithms like AES that uses inverse cipher [aes01]), implementation
costs are reduced significantly compared to other algorithms that require inverse
operations for decryption.

These features highlight Ascon’s lightweight design and its role in establishing cryp-
tographic standards for constrained devices.

2 Ascon Permutations

As already mentioned in 1, Ascon utilizes lightweight permutations as a core crypto-
graphic function to process the internal state (explained in 2.1). This means that the
bits of the internal state (that comprise the message input amongst other data) get
shuffled around through multiple rounds, ensuring that each input produces a unique
output. This way, it is difficult for any potential adversary to reverse the permuted
state.

Ascon permutations act as the main components of the ciphering and hashing algo-
rithms and are iteratively applied rnd-times depending on the algorithm used. They
are specified as rnd-round Ascon-p[rnd] permutations, where 1 < rnd < 16. This means
that Ascon-p[8] would indicate a permutation of 8 rounds, so the input state gets per-
muted 8 times. Note that higher rounds can be used to ensure more secure ciphering.
Additionally, Ason-p/8] and Ason-p[12] are exclusively used for the introduced algo-
rithms; however, permutations defined with other numbers may be used to standardize
other functionalities.

In Ascon, a permutation is a transformation that is applied to a 320-bit long internal
state. The transformation itself consists of three different layers. Each round of the
permutation transforms the state as follows:

b=pPrLopsopc,

where p; is the constant-addition layer, pg is the substitution layer and po is the
diffusion layer. This means that given an Ascon-p/8/ permutation as an example, all
three layers (constant-addition, substitution and diffusion) are applied iteratively 8
times.

2.1 Internal State

As previously stated, the permutations operate on an internal state. This 320-bit state
is divided into five concatenated 64-bit long words, denoted as S; for 0 < < 4, making

up the final state S:
S=S50 || Sl S2 [l S5l Sa

This means that the Ascon algorithm will apply three layers of transformation (constant-
addition, substitution, and diffusion) to the internal state S throughout a single round
of permutation, up to 16 rounds, causing the individual words and bits to be shuffled
around.

Each Ascon algorithm initializes the internal state differently and will be discussed in
further detail in their respective specifications.

2.2 Constant-Addition Layer pC

The Constant-Additional Layer is the first part of the transformation the internal state
goes through in a permutation. It aims to break the symmetry of the internal state,
allowing unpredictability and therefore better security. This layer takes a constant
value ¢; and shuffles it into the internal state using the XOR (@) operator. The
pre-determined constant value is different for each round i of the Ascon permutation
Ascon-p[rnd], with 0 <i <rnd -1 and is defined as

¢ = CONSt16-rnd+i-

The constant variables consty, ..., constis are defined in table 1.

1 const; 1 const;

0 0x000000000000003c | 8 0x00000000000000n4
1 0x000000000000002d | 9 0x00000000000000a5
2 0x000000000000001e | 10 0x0000000000000096
3 0x000000000000000f | 11 0x0000000000000087
4 0x00000000000000f0 | 12 0x0000000000000078
5 0x00000000000000e1 | 13 0x0000000000000069
6 0x00000000000000d2 | 14 0x000000000000005a
7 0x00000000000000c3 | 15 0x000000000000004b

Table 1: The constants const; to derive round constants of the Ascon permutations

The constant is incorporated into the internal state, however only the word Ss gets
modified:
Sy = Ss @ ¢.

This means that from the whole internal state S comprising of five 64-bit words, only
one singular word S, undergoes transformation in this step.

Note that for each constant, the first 56 bits are zero, which means that only the least
significant 8 bits (consequently, only one byte) are applied to Ss.

2.3 Substitution Layer pS

Following the constant-layer transformation, a substitution layer is applied to further
modify the internal state. The introduction of this transformation ensures nonlinearity,
which contributes to the resistance of cryptanalytic attacks like differential or linear
cryptanalysis [crat94]. In this layer, a 5-bit S-Box transformation is applied to each

word 64 times in parallel in a bit-sliced fashion as shown in figure 1. A bit-slice is
defined as the collection of bits at the same position across all five words of the internal
state. This results in a modification of each vertical slice, containing one bit from each
word of the state S.

Figure 1: 5-bit S-Box [res23]

The S-Box transformation itself that is applied to each slice is depicted in figure
2. Each slice is treated as a 5-bit input to the S-Box and maps it to a new 5-bit
output. The same S-Box is applied in parallel to all 64 slices, resulting in a bit-
sliced implementation. The exact transformation is fixed and optimized for lightweight
cryptography, a key design point in the Ascon family.

Figure 2: 5-bit S-Box [res23

—

S ey Yy oD
0 V\‘/ Lag V\“/ L

; S
1o S S
S

To note is that the S-Box logic involves only AND (©), XOR (@) and NOT oper-
ations, and it is designed to be bitsliced and efficient for both hardware and software.
In hardware, the S-Box may also be implemented with a lookup table (since there are
only 25 = 32 possible input variations), though it requires consideration of area cost
and side-channel vulnerability. Table 2 represents the lookup table of S-Box, where
the 5-bit inputs are represented in hexadecimal numbers.

x O(1 123|456 |78 |9]|a|b|lc|d|e]|f
SBox(z) | 4 | b |if [14 |1a|15| 9 | 2 |1b| 5 | 8 [12]1d| 3 | 6 | 1c
T 10 (11 (12|13 |14 15|16 |17 |18 |19 |1la | 1b| 1c | 1d | 1e | 1f
SBox(z) || 1e | 13| 7 e | 0| d|[11|18|10]| c 111916 | a | £ |17

Table 2: S-box values used in the Ascon permutation

2.4 Linear Diffusion Layer pL

Finally, a linear diffusion is applied to the internal state as the last step of the Ascon
permutation. It’s the final transformation of a round and is responsible for spreading
the influence of each bit across the state. Through this transformation, even a slight
change in the input ensures a widespread alteration of the output bits. This naturally
enhances the cipher’s resistance to unwanted attacks.

The Linear Diffusion Layer mixes the bits together in a horizontal fashion, which means
that the transformation happens within each 64-bit word, like depicted in figure 3.

Figure 3: Linear Diffusion Layer p; [res23]

The diffusion layer applies a combination of bitwise rotations (>) and XOR oper-
ations to each word:

¥0(S0) = So @ (Sp > 19) @ (Sp > 28)
Y1(S1) = S1 @ (S; > 61) @ (S > 39)
Y9 (S3) =Sy @ (Sy> 1)@ (S, > 6) 3)
¥3(S3) = Sz @ (S5 > 10) @ (S3 > 17) 4)
Y4(S1) =Si@(S; > 7) @ (Sy > 41), (5)
where the function ¥; is applied to their corresponding words as S; « X;(i), where
0 <7 <4. The Linear Diffusion Layer acts as the final step of the state transformation
and concludes a permutation round.
To conclude, the three layers of the permutation ensure that the internal state stays re-

sistant to cryptanalytic attacks. This transformation is paramount in Ascon’s lightweight
and secure design for ciphering, authentication, and hashing.

)
2)

~—~~ I/~ —~

3 Authenticated Encryption Scheme: Ascon-AEAD128

The Authenticated Encryption Scheme: Ascon-AEADI128 is a lightweight Authenti-
cated Encryption with Associated Data, designed for environments with limited re-
sources like IoT devices. This section will elaborate on the specification of this scheme
in a detailed manner.

3.1 Specification of Ascon-AEAD128

Ascon-AEADI128 is responsible for encrypting and decrypting data and therefore con-
sists of two algorithms - one for encryption (Ascon-AEAD128.enc 3.2) and one for
decryption. (Ascon-AEAD128.dec 3.3).

Even though Ascon-AEAD128 consists of two algorithms, the processes of encryption
and decryption are very similar in design and use the same permutation.

5

3.2 Encryption

Ascon-AEAD128.enc is responsible for encrypting plaintext to ensure data security
by converting readable data into an unreadable format (ciphertext). It also offers
authentication by verifying the identity of the sender using a cryptographic tag and
associated data support. Note that associated data is mainly used to provide integrity
protection for non-sensitive metadata (like headers or addresses) that is not encrypted
but still needs to be authenticated.

The following describes an Ascon-AEAD128.enc function:

Ascon-AEAD128.enc(K,N, A, P)=(C,T),

where K is a 128-bit secret key, N is a 128-bit nonce, A is a variable-length associ-
ated data and P is a variable-length plaintext. The function outputs the ciphertext C'
(where |C| =|P|) and a 128-bit long authentication tag T

Ascon-AEAD128.enc consists of four main phases:

e Initialization: Initialization of the internal state with input key K and nonce
N

e Associated Data Processing: Absorption of the associated data A into the
internal state

e Plaintext Processing: Encryption of plaintext into ciphertext C'

e Finalization: Reinjection of the key K and extraction of an authentication tag
T

The encryption process is depicted in figure 4 and showcases the four different phases.
Important to note is that the Associated Data A, Plaintext P, and Ciphertext C are
divided into different blocks for processing, therefore indicated as Ag... A, Po... P,
and Cjy...C), in the figure.

Furthermore, two core functions, namely parse(X,r) and pad(X,r), are used to parse
bitstrings into blocks and then padded to a desirable length. These functions are
described in Appendix F and will be used frequently.

Figure 4: Ascon-AEAD128.enc encryption [res23]

!) ! — !
= 128:;*‘ _ 128$ _ | 128 L* T | 128% _ ‘*T L 128 | =
S o x © o> @ [© o= 3 128
Q 1 > > i e > 1 Q
& 1 c c 1 c c 1 &
S | 122 3 192.| 3 s 192 S 192 g |12 o~ 8
2 P : > L p— £ : > Lt £ :>\.IJ= 2
IV[IK|IN - 0*[|K: 0%||1: K|[0* K
Initialization Associated Data Plaintext Finalization

The pseudocode for the whole encryption process (referenced from the original
Ascon specification pseudocode [asc24]) is provided in algorithm 1 and will be discussed
in detail.

Algorithm 1 Ascon-AEAD128.enc(K, N, A, P)

Input: 128-bit key K; 128-bit nonce N; Associated data A; Plaintext P

Output: Ciphertext C; 128-bit tag

]V < 0x00001000808c0001 > Initialization
S« IV|K|N

S < Ascon-p[12](S)

S« Se (0192|K)

if |A| >0 then > Processing Associated Data
Ag, ..., Ay, A, < parse(A,128)
A,, < pad(A,,,128)
for ¢ =0 to m do
S < Ascon—p[8]((S[o:127] ® Ai)| Spi2s:3191)
10: end for
11: end if
122 S < S (0391)

13: Py,..., Py, ’]5; < parse(P,128) > Processing Plaintext
14: { < |P,|

15: for i=0ton-1do

16: Stoa127] < S[o:127 © B

17 Ci < S[o127]

18: S « Ascon-p[8](S)

19: end for .

20: §\[91127] <« 5[0;127] @ pad(Pn, 128)

21: C), < S[o;g_l] .

22: C' <« Cyll...|Cha]|Ch

23: S « Ascon-p[12](S @ (028 K[0%4)) > Finalization
24: T < S[192:319) ® K
25: return C, T

As stated previously, the encryption process consists of four phases: Initialization
3.2.1, Associated Data Processing 3.2.2, Plaintext Processing 3.2.3 and Finalization
3.2.4. Each phase will be described in detail in the following sections, with reference
to the official Ascon specification pseudocode 1.

3.2.1 Initialization

The encryption process starts with the initialization phase. This phase sets up the
internal state of the Ascon cipher before any data is processed.

First, a fixed 64-bit initial value IV (refer to Appendix G for the values) is defined, be-
fore concatenating it with the 128-bit secret key and the 128-bit public nonce, making
up the initial internal state:

S « IV|K|N.

This state is then permuted using the Ascon-p[12] permutation, which applies 12
rounds of cryptographic transformation to ensure diffusion and non-linearity as ex-

plained in 2:
S « Ascon-p[12](95).

Note that only in the initialization and finalization phases, a 12-round permutation
Ascon-p[12] is used. All the other phases use an eight-round permutation Ascon-p/8/
in this algorithm.

After the 12 round permutation, the input key K is then incorporated into the internal
state by XORing it with the last 128 bits of S. Since the state contains 320 bits and
the key is only 128 bits long, the remaining 192 bits are first concatenated into the
state as zeros:

S < S (02| K)

The above step ensures that the secret key is well integrated into the state and therefore
helps prevent unwanted malicious attacks. This concludes the initialization phase of
the encryption process. As a result, the internal state is securely initialized and ready
for processing the associated data and plaintext.

3.2.2 Associated Data Processing

After the initialization phase, the input associated data A is processed by injecting it
into the cipher’s internal state. This step absorbs the associated data into the state for
authentication during the finalization phase in 3.2.4; however, no encryption is taking
place. This stage ensures that any change in A will be detected by the verification
process, even though no ciphertext is produced.

The following section will explain in detail the processing of associated data A with
references to the official Ascon specification pseudocode 1.

First of all, the associated data plaintext needs to be prepared for processing, since
the Ascon specification operates block-wise. The functions parse (X, r) and pad(X,
r) will be used to process the associated data A in blocks of r bits (where r = 128 in
Ascon-AEADI128 as indicated in parse(A,128)). If the length of A is not a multiple
of r, it is then padded by appending a single 1 bit followed by the minimum number
of 0 bits needed to reach a full 128-bit block:

Ag, ..., A1, A, < parse(A,128)
A,, < pad(A,,,128)
If A is empty, no associated data blocks are processed, and the padding step is skipped
entirely.
After the processing of the plaintext, each block Ay,...,A,, gets absorbed into the

cipher’s internal state. This is done by XORing each block A; (in a loop) into the first
128 bits of the state:

((Stoa2m ® Ai)||Sp2s:319])

The updated state is formed by XORing A; into the first 128 bits of the state, while
the remaining bits are left unchanged. After incorporating the associated data block,
the algorithm applies the Ascon permutation with 8 rounds to the entire state:

S < Ascon-p[8]((S[o127) @ Ai)| Spi2s:s197)-

This approach of permuting after each block gets absorbed, mixes the associated data
into all parts of the state before the next block is processed. These two steps (XOR then
permutation) are repeated for each AD block in sequence. Notably, this phase does
not produce any output — it mainly makes sure that the associated data influences
the state (and later authentication tag) but does not itself appear in the ciphertext.
After all AD blocks are processed, a domain separation constant is XORed into the
state to mark the transition into the next phase: Plaintext Processing 3.2.3. In this
algorithm, the constant is indicated by a single bit (1 bit with 319 zeros) and will be
XORed into the state:

S« Se (0°)1).

Notably, this domain separation step is essential to distinguish the AD phase from
the plaintext processing phase, by ensuring that there is no ambiguity in how data is
interpreted during processing.

3.2.3 Plaintext Processing

The third stage of the encryption algorithm is the plaintext processing. The purpose
of this phase is to encrypt the input plaintext message P and produce the output
ciphertext C, while ensuring that the message is also authenticated (since its influence
propagates into the finalization stage 3.2.4 used to generate the tag). Similar to
the associated data processing 3.2.2, blocks of plaintext are absorbed into the state.
This phase uses a duplex sponge construction, where each plaintext block is first
XORed into the state (absorbed), and the updated state immediately produces the
corresponding ciphertext block (squeezed). Since this process of absorbing input and
then squeezing output resembles the usage of a sponge, it is referred to as a duplex
sponge construction.
The following section provides a detailed explanation of how the plaintext input P is
processed to produce the ciphertext C' output.

Similar to the previous stage, the plaintext P is split into different blocks for
processing. This divides the input P into a sequence of 128-bit blocks Fj .. .P,. This
ensures that each block can be processed uniformly by the sponge:

P,,...,P,1, P, < parse(P,128)

The variable assignment of ¢ in line 14 as part of pseudocode 1 computes the bit-
length of the final plaintext block and has a variable length 0 < ¢ < 128. It will be used
to extract exactly ¢ bits of ciphertext from the state for the last cipher block, since
the encryption function specifies that |C| = |P|:

(<[P

After the plaintext is processed into different blocks, the algorithm starts process-

ing each full block (except for the last block B,; it will be processed after the loop)
by looping over them. Each block gets absorbed into the state and produces a corre-
sponding cipher block Cj.
The absorption takes the plaintext block P; and XORs it into the first 128 bits of
the internal state. This means that the old state and P, are combined so that the
state now depends on the plaintext block. Note that the remaining 192 bits remain as
before:

Slo:127] < S[o:127) @ B

After the absorption step, a ciphertext block C; is immediately produced (”squeezed
out”) from the first 128 bits of the state. This means that the portion of the state
mixed with P, becomes part of the ciphertext output:

Ci < 5[0:127]

The internal state S is then permuted with an 8-round Ascon permutation. This step
provides diffusion and scrambles S, so that the effects of the plaintext block P; and
every previous block are spread throughout the state. The permutation also prepares
the state for the following block’s absorption and prevents patterns, since between
every block absorption, Ascon-p[8] is applied.

S « Ascon-p[8](95).

The sponge mechanism of absorbing and squeezing blocks concludes after the loop
has iterated through every plaintext block (apart from P,).
After the iteration, the remaining partial block P, is then padded and absorbed into
the state. The padding is essential, as the last block does not necessarily have a
length of 128 bits but instead a variable length ¢, which means that the block needs
to be padded to 128 bits. (P, becomes P, | 1]0...0 with 128 bits in length after the
padding). This padded block is then XORed into the first 128 bits of S:

Sto:127] < S[o:127) @ pad(ﬁ;, 128)

After the final bits have been absorbed into the state, the corresponding cipher block
needs to be squeezed out. In this case, the first ¢ bits of the state are output as the
last ciphertext segment C,. This “squeezes” the exact number of bits corresponding
to P, (if £ =0, this step produces no bits):

6*2 <~ S[O:Z—l]
Finally, all the ciphertext blocks are concatenated into the full ciphertext output C":

C < Col...[|Cana T

At this point, the whole plaintext input has been completely encrypted and the final
digest constructed. The internal state holds all absorbed data, which will be used in
the next step: Finalization 3.2.4

3.2.4 Finalization

After the plaintext has been absorbed and the ciphertext created, the algorithm enters
the finalization stage to produce a 128-bit authentication tag T'. The authentication
tag ensures the integrity of both the plaintext as well as the associated data input
during the previous stages. It verifies that the message has not been tampered with and
is therefore paramount for secure communication. It summarizes all data that has been
absorbed into the state (Nonce and Key during the initialization phase, Associated
Data during AD Processing, and Plaintext input during Plaintext Processing) and
produces a unique 128-bit long authentication tag.

10

During the decryption 3.3 process, the recipient can then ensure that the message is
valid by comparing their tag (created in the decryption process) with the one produced
during the encryption phase.

The finalization stage starts by absorbing the secret key K back into the state and
then applying a 12-round Ascon permutation:

S « Ascon-p[12](S @ (028 | K| 0%))

The notation S @ (0'28|| K|0%4) indicates that the first 128 bits of the XOR mask are
zeros, the next 128 bits are the key K, and the last 64 bits are zeros, making up
320 bits in total for the entire internal state. This means that the key is injected
into the middle of the state, while the rest stays the same. The permutation that
follows diffuses the entire state further and provides strong mixing before extracting
the authentication tag 7"

T < Shg2319)® K

Noticeably, the authentication tag is extracted by taking only the last 128 bits of the
state and XORing them with the key K. Here, Sig2.319) denotes the bits from index
192 until 319 of the state — which correspond to the last two 64-bit words of S: Sy
and S5. By incorporating the secret key directly into the authentication tag ensures
that even if an attacker sees the tag and ciphertext, they cannot predict nor forge tags
without the key.

Finally, the ciphertext and authentication tag are returned:

returnC, T

This completes the encryption algorithm Ascon-AEAD128.enc.

3.3 Decryption

Ascon-AEAD128.dec is responsible for decrypting ciphertext by converting it back to
plaintext. Similar to the encryption algorithm Ascon-AEAD128.enc 3.2, this algorithm
also offers authentication by verifying the identity of the sender using a cryptographic
tag.

The following describes an Ascon-AEAD128.dec function:

P if the tag T' is valid

Ascon-AEAD128.dec(K,N,A,C,T) =% .)
fail otherwise

where K is a 128-bit secret key, N is a 128-bit nonce, A is a variable length asso-
ciated data, C is a variable-length ciphertext and 7T the authentication tag used to
verify data integrity. The function outputs the plaintext P if its own produced 128-bit
authentication tag matches the input authentication tag T'; otherwise, the algorithm
fails in case the tags do not match and therefore no integrity is guaranteed.

Ascon-AEAD128.dec consists of four main phases:

e Initialization: Initialization of the internal state with input key K and nonce

N

11

e Associated Data Processing: Absorption of the associated data A into the
internal state

e Ciphertext Processing: Decryption of ciphertext C' into plaintext P

e Finalization: Reinjection of the key K, extraction and validation check of an
authentication tag T

The decryption process is depicted in figure 5 and showcases the four different phases.
It is also worth noting that the first two phases (Initialization and Associated Data
Processing) of the decryption and encryption algorithms are identical. The detailed
explanations are therefore omitted to avoid repetition; however, the specification can
be found in the section 3.2.1 and 3.2.2.

Figure 5: Ascon-AEAD128.dec decryption [res23|

! Y ' N !
= 128:‘*‘ _ 128% — | 128 :JTL‘ = 128% _ JT\“ D 128 | =
a i ICN SRS =) o> o [o Mpe—* 3 128
Q 1 > > 1 > x> 1 Q
= 1 c c 1 c c 1 I
S |~ 192 3 192 9 192 3 192 g 12 | ©
<™ : " < : > < =$: > < — < :=\+/= 2
: __J : __J :
* * *
IV[IK|IN - 0*[|K: 071 K] K
Initialization Associated Data Ciphertext Finalization

The pseudocode for the decryption process (with reference to the official Ascon
specification) is provided in algorithm 2 and the last two phases will be explained in
detail in the following sections.

12

Algorithm 2 Ascon-AEAD128.dec(K, N, A,C,T)

Input: 128-bit key K; 128-bit nonce N; Associated data A; Ciphertext C'; 128-bit
tag T'

Output: Plaintext P or fail

: IV « 0x00001000808c0001 > Initialization

S <« IV|K|N

S « Ascon-p[12](S)

S« Sae (0192|K)

if |A] >0 then > Processing Associated Data
Ao, ... Ay, Ay < parse(A, 128)
A,, < pad(4,,,128)
for i =0 to m do
S[o:127]) < S[o:127] @ A;
10: S « Ascon-p[8](S)
11: end for
12: end if
13: S« So (039)1)

14: Cy,...,Chq,C,, < parse(C,128) > Processing Ciphertext
15: for i=0ton—-1do

16: P; < Spp10m @ Cj

17 Stoa27) < Ci

18: S « Ascon-p[8](S)

19: end for

20: €<— IC,|

21: P, < S[ou-1] ® C,

22: Spp17) < 55.127 @ (1]0127¢)

23: S[ou-1] < avn

24: S « Ascon-p[12](S @ (028 K[0%4)) > Finalization
25: T « 5[192;319] oK

26: if 7" ==T then .

27: P < Bl...|Pu1]|Pn

28: return P

29: else

30: return fail

31: end if

3.3.1 Ciphertext Processing

After initializing the internal state and processing the associated data in the first
two phases, the algorithm is prepared to process the ciphertext and decrypt it into
plaintext.

First, the ciphertext is parsed into 128-bit long blocks, where the final block C, may
be partially filled, depending on the size of the input ciphertext C'

Ao, ..., Ap_1, A, < parse(4, 128)

13

The algorithm then loops over every block apart from the last one 6’;, as this block
contains a variable length ¢ that will be processed after the loop. For each block, the
corresponding plaintext block P; is recovered by XORing the current state’s first 128
bits with the cipher block C;:

P; < Sjo.127 @ C;

This step principally inverts the encryption step, where the original encrypted block
had computed C; = Sjp.1271 ® F;. And because XOR is reversible, P; = S[o.127] ® C;
recovers the original plaintext.

After recovering the plaintext block P;, the state is then overridden with the ciphertext
block C;:

5[0:127] <~ C;

This mirrors how encryption had injected the plaintext into the state, which means
that by storing C; back into the state, an identical reflection of the encryption process
is created.

Finally, an eight-round permutation will be applied to the state:

S « Ascon-p[8](95)

The permutation diffuses the injected ciphertext block throughout the internal state,
just as it did for the plaintext blocks during the encryption process in 3.2.3.

After the loop, the final ciphertext block C,, needs to be processed. Since the block
can have a variable length ¢ where 0 < ¢ < 128, it needs to be handled differently:

(< 1|C,|
P, < S0 C,
As one can see, the last partial plaintext block P, is recovered by XORing the first ¢
bits of the state with C,,.

The bits from index ¢ to 128 of the internal state is then updated with a single 1 bit
followed by zeros:

Ste127] < S[e12n @ (1]0%275)

This step acts as domain separation and also aligns with the encryption process, en-
suring symmetry. Finally, the last ¢ bits of the state are set to the last ciphertext
block bits:

Sto:e-11 < Cn

This injection mirrors the encryption algorithm, where the last padded plaintext block
was injected into the state. After this step, the state has absorbed all ciphertext blocks
and extracted the plaintext.

Note that the plaintext/ciphertext processing steps in both encryption and decryption
algorithms in Ascon-AEAD128 are mirrored:

Encryption: C; < S[oa271® P, S[oa2r) < P, S < Ascon—p[8](S)
Decryption: P; < Spo127 @ Ci; Spoaer) < Ci, S« Ascon-p[8](5).

14

Noticeably, aside from swapping P; and C; in the XOR, the state update is identical.
Both parts absorb their respective blocks before applying an eight-round permutation.
The mirroring ensures that each encryption step can be "replayed” in decryption,
which means that both sides produce the same final internal state and therefore also
the same authentication tag for verification.

3.3.2 Finalization

The finalization step occurs after all ciphertext has been processed and the plaintext
blocks reconstructed. In this stage, the algorithm injects the secret key back into the
state and computes the authentication tag.

The state is XORed with a constant containing the key K and permuted 12 times:

S « Ascon-p[12](S @ (0'%| K [051))

This step prepares the internal state for tag extraction. The new authentication tag
T" is computed by taking the last 128 bits of the state and XORing it with the key K:

T" < S[192:319) ® K

Finally, the newly computed tag 7" is compared to the input authentication tag T'. If
they match, authenticity is confirmed and the plaintext is returned by concatenating
all the computed blocks together:

P« PBy|... [P P,

If there is any mismatch, the decryption process fails and returns fail, indicating an
authentication error. This final tag comparison ensures that the data has not been
tampered with by any unwanted adversaries:

returnfail

Each step above mirrors the respective encryption sections in reverse, which means that
the internal state is updated coherently and ultimately used to verify the tag to authen-
ticate the plaintext. This completes the decryption algorithm Ascon-AEAD128.dec.

4 Hash and Extendable Output Functions

The Ascon family includes cryptographic hash and extendable output functions de-
signed for lightweight applications. These algorithms are built upon the sponge con-
struction and leverage the same permutation as the Ascon-AEAD128 functions:

e Ascon-Hash256: This hash function converts a variable length message M and
produces a 256-bit long digest.

e Ascon-X0F128: This extendable output function (XOF) produces an output of
any desired length, unlike Ascon-Hash256 with a fixed digest length.

e Ascon-CX0F128: This customized XOF extends the functionality of Ascon-X0F128
by incorporating a customization string into the computation.

The following sections present the specifications of these functions in detail, as
defined in the official Ason specification [asc24].

15

4.1 Specification of Ascon-Hash256

Ascon-Hash256 is a sponge-based hash function that takes an input message M and
produces a 256-bit long digest with 128-bit security. It operates on a 320-bit internal
state split into five 64-bit words, similar to the previously specified Ascon-AEAD128
functions.

Figure 6 depicts the structure of the Ascon-Hash256 and Ascoon-X0F128 algorithms.
Note that both share the same structure, though they still differ in design (elaborated
in section 4.2).

Figure 6: Structure of Ascon-Hash256 and Ascon-X0F128 [res23]

' Mo M, . Hy Hir/6a1-1
1 — ! M
1 1
— |64 ,*\ = 64 % - 64T — | 64 — | 64
Q 1 Q Q 1 Q QU
c | o < c | o < <
S| 125 | 8 256 | S| 125 | 9 256 | & | 256
< 1 T < < 1 T < ’ "< >
! ~— ! —
1 1
IV||0* ' !
Initialization Absorb Message Squeeze Hash

As shown in figure 6, Ascon-Hash256 consists of three phases: Initialization, Mes-
sage Absorption and Hash Squeezing. The pseudocode for the Ascon-Hash256 al-
gorithm is provided in algorithm 3 and will be described in detail in the following
sections, with reference to the official Ascon specification pseudocode [asc24].

Algorithm 3 Ascon-Hash256(M)
Input: Message M € {0,1}*
Output Hash output H € {0,1}2%¢
: IV < 0x0000080100cc0002 > Initialization
2: S < Ascon-p[12](IV[02%6)

My, ..., M,_1, M, < parse(M,64) > Absorbing phase
M,, < pad (M, 64)
fort=0ton-1do
Slo:63] < S[o63) ® M;
S < Ascon-p[12](S)
end for
STo:63] < S[o:63) ® My

10: S « Ascon-p[12](S) > Squeezing phase
11: for =0 to 2 do

12: H; < 5[0:63]

13: S < Ascon-p[12](S)

14: end for

15: Hs « 5[0:63]

16: H < Hy| H,|Hy| Hs

17: return H

16

4.1.1 Initialization

This phase is responsible for initializing the internal state with a constant initial value
IV. The IV is incorporated into the first 64 bits of the state, which then gets permuted
12 times:

1V «< 0x0000080100cc0002
S < Ascon-p[12](1V]02°%)

4.1.2 Message Absorption

After the initialization phase, the state is ready to absorb the input message M. First,
the message is split and padded into different 64-bit long blocks for processing:

My, ..., M,_1, M, < parse(M,64)
M,, < pad (M, 64)

Unlike the Ascon-AEAD128 functions 3, all blocks are padded fully to 64 bits for pro-
cessing, including the final block M,,.
Each block is then absorbed by XORing it into the first 64 bits of the internal state.
After the absorption follows a 12-round Ascon permutation, ensuring that the state is
prepared for the next message block:

Slo63] < S[o63) © M;
S « Ascon-p[12](5)
Note that the loop does not cover the last message block M,,, as the final permutation
does not take place in the absorbing phase, but at the start of the squeezing phase:
STo:63] < S[o:63) ® M,
The integration of the last message block concludes the absorbing phase of Ascon-Hash256.

4.1.3 Hash Squeezing

After all blocks are absorbed into the state, the state is ready to start squeezing out the
hash blocks. First, a permutation takes place at the beginning of the squeezing phase.
This makes sure that after the last message block is absorbed (from the absorption
phase), the state is further diffused:

S « Ascon-p[12](5)

Since Ascon-Hash256 outputs a 256-bit long digest, only four 64-bit long hash blocks
need to be digested (4 x 64 = 256 bits). Here, the first three blocks (Hy, H1, Hy) are
squeezed out and the state undergoes a 12-round permutation for each hash block
processed:
H; < 8[0:63]
S « Ascon-p[12](5)

17

This step produces the hash blocks Hy, H; and H,, with the final block squeezed out
after the loop:
Hjz < 5[0:63]-

Note that after the processing of Hs, no permutation takes place as the algorithm has
finished processing the output digest at this point. After all blocks are extracted, the
final hash digest is constructed by concatenating the hash blocks:

H « Ho| H:|H2| Hs,

where H is the final 256-bit long digest.

4.2 Specification of Ascon-XOF128

The Extendable Output Function Ascon-X0F128 acts as an extension of Ascon-Hash256
that allows the user to specify the output’s desired length, in addition to the message
input M. As depicted in figure 6, the structures of these two algorithms are equal,
though fundamentally, Ascon-X0F128 differs to Ascon-Hash256 in multiple ways:

1. Since Ascon-X0F128 can have an arbitrary output length, the length L > 0 needs
to be specified as an input.

2. Ascon-Hash256 has a fixed 256-bit digest. Since the output length is specified
in Ascon-X0F128, the number of blocks that are processed during the squeezing
phase is equal to [L/64].

3. The initial value IV differs from the Ascon-Hash256 algorithm by one bit.

Similar to Ascon-Hash256, the Ascon-X0F128 function consists of three phases: Ini-
tialization, Message Absorption and Hash Squeezing. The pseudocode is provided in
algorithm 4, with reference to the original Ascon specification pseudocode and will be
explained in detail in the following sections.

18

Algorithm 4 Ascon-X0F128(M, L)
Input: Bitstring M € {0,1}*; Output length L >0
Output: Digest H € {0,1}

1: IV < 0x0000080000cc0003 > Initialization
S « Ascon-p[12](1V]|02%9)

Y

My, ..., M,_1, M, < parse(M,64) > Absorbing phase
M,, < pad(M,,,64)
fori=0ton-1do
Sto63] < S[o63) © M;
S « Ascon-p[12](95)
end for
Slo63]) < S[o63) © M,

10: S « Ascon-p[12](S) > Squeezing phase
11: h< [L/64]-1

12: fori=0to h-1do

13: H, < 5[0:63]

14: S « Ascon-p[12](5)

15: end for

16: Hj « 5[0:63]

17: H' < Ho|Hy| ... |Hy

18 H < Hiy;
19: return H

4.2.1 Initialization and Message Absorption

The initialization and message absorption phases in Ascon-X0F128 are mostly identical
to the ones in the Ascon-Hash256. The only difference lies in the initialization phase,
where the initial value IV only differ by one bit:

Ascon-Hash256: (0z0000080100cc0002
Ascon-X0F128: (0x0000080000cc0003.

Since both phases are explained in sections 4.1.1 and 4.1.2 with reference to the
pseudocode, a detailed explanation will be omitted in this algorithm in order to avoid
repetition.

4.2.2 Hash Squeezing

After the state has been initialized and the message blocks absorbed, the algorithm
enters the squeezing phase, where a variable-length hash output is produced. This
phase differs from the Ascon-Hash256 algorithm, as the digest length needs to be
adjusted to the length of the input variable L. First, a 12-round permutation is
applied to the state before processing the hash blocks in order to ensure that the state
is diffused:

S « Ascon-p[12](S)

19

The number of 64-bit hash blocks (denoted by h) that need to be squeezed out is then
computed by dividing L with 64:

h < [L/64] 1.

Note that this step subtracts 1 to h, as this gives the number of full iterations in the
loop for hash block processing. The last block is handled separately, outside of the
loop.

In a loop, the hash blocks are then computed by taking the first 64 bits of the internal
state. This step is similar to the Ascon-Hash256 algorithm, as the only difference lies
in the length of the loop (fixed loop length in Ascon-Hash256 and variable loop length
dependent on L in Ascon-X0F128):

H; < 5[0:63]
S « Ascon-p[12](S)
Finally, the last hash block H}, is produced after the loop:

H}, < S[o3]

Note that Hj, has a fixed length of 64 bits at this point, since Ascon operates on
64-bit blocks at a time. Since the final digest should have the length of L, the final
concatenated hash H’ is truncated, so that it has the correct length:

H' < Ho|Hy|...|H,

H « H[IO:L—l]

H is then returned and this step concludes the Ascon-X0F128 algorithm.

4.3 Specification of Ascon-CXOF128

Ascon-CX0F128 is a customized version of Ascon-X0F128 and allows the user to add
a customization string as input. This input is then used in the computation of the
final digest, providing further customization. Note that an input of two different
customization strings and the same message produces two different digests. Figure 7
illustrates the structure of Ascon-CX0F128.

Figure 7: Structure of Ascon-CX0F128 [res23]

: ZO Zm : MQ Mn : Ho HfL/64—|fl
! — ! — ! —
1 1 1
< |64 * = % = |64 f*\ = % = |64 T = = | 64
g :=\U= S S :=\JJ= g E. : > E .. g "
* ! * i ! - > ! > *
[1 c c 1 c c 1 c c
S| 125 |8 256 | & | 1256 | 9 256 | § | 1256 | 9 256 | & | 256
< ' M T < 1 LT T < ' LT M T
1 1 1
1 1 1
IV[|0* : . .
Initialization Customization Absorb Message Squeeze Hash

Noticeably, Ascon-CX0F128 contains the same phases (Initialization, Message Ab-
sorption, and Hash Squeezing) as the previously specified hash and extendable output
functions; however, a new phase - a customization phase - is added before absorbing

20

the message.
The algorithm is defined as follows:

Ascon-CXQF128(M,L,7) = H,

where M is the message, L the desired length of the digest, Z the customization string,
and H the output digest.

Ascon-CX0F128 is very similar to the non-customizable version Ascon-X0F128 and
varies in the following ways:

1. The initial value I'V differs from the Ascon-X0F128 algorithm by one bit.

2. In addition to the message M and digest length L, Ascon-CX0F128 takes as an
additional input a customization string Z, where Z can be at most 2048 bits
long.

For comparison, the Initial Values IV of the hash and extendable output functions are
as follows:
Ascon-Hash256 : 0x0000080100cc0002
Ascon-X0F128: (0x0000080000cc0003

Ascon-CX0F128: 0x0000080000cc0004.

The pseudocode for Ascon-CX0F128 is provided in algorithm 5, with reference to the
original Ascon specification pseudocode. Since the initialization, message absorption,
and hash squeezing phases are the same as the ones already specified in Ascon-C0F128
4.2, only the customization phase will be explained in detail and the other phases
omitted.

21

Algorithm 5 Ascon-CX0F128(M, L, 7))

Input: Bitstring M € {0,1}*; Output length L > 0; Customization string Z € {0,1}*,
where |Z| <2048

Output: Digest H € {0,1}F

1: IV < 0x0000080000cc0004 > Initialization
2: S < Ascon-p[12](IV|02%6)

Zy < int64(|Z]) > Customization
7y, Zmr, Zm < parse(Z,64)
Zy < pad(Z,,, 64)
for i =0 to m do
Slo:63] < S[063] © Zi
S « Ascon-p[12](5)
end for

10: My,..., M,_1, M, « parse(M, 64) > Absorbing Message
11: M, < pad(M,,64)

12: fori=0ton—-1do

13: Sto63] < S[o63) © M;

14: S « Ascon-p[12](5)

15: end for

16: S[o:63] < S[063) ® Mp

17: S « Ascon-p[12](S) > Squeezing
18: h« [L[64]-1

19: for i=0to h—-1do

20: H; < 5[0:63]

21: S « Ascon-p[12](5)

22: end for

23: Hj « 5[0:63]

24: H' < Hyl ... |Hp

25: H « H[IO:Lfl]
26: return H

4.3.1 Customization

The customization phase starts after the state has been initialized with the IV during
the initialization phase. First, the whole length of the customization string is encoded
as a 64-bit integer block Zy. This block acts as a domain separation, ensuring that
strings with different lengths all map to different outputs:
Zy < int64(|Z])
After this step, the whole customization string gets parsed and padded into 64-bit
blocks:
71y Doty Zm < parse(Z,64)
Zp < pad(Z,y,, 64)

22

Each block Z; is then injected into the internal state, followed by a 12-round permu-
tation, similar to the absorption phase:

STo:63] < S[0:63) ® Z;
S « Ascon-p[12](S)

Once all blocks have been injected into the internal state, the algorithm transitions
into the message absorption phase and finally squeezes the hash digest H.

5 Conclusion

Ascon offers a family of lightweight cryptographic functions for resource-constrained
environments. Along with the Ascon permutation, the functions Ascon-AEAD128,
Ascon-Hash256, Ascon-X0F128, and Ascon-CX0F128 deliver strong security against
known cryptanalytic attacks.

Despite these strengths, Ascon does not specifically target every use case. For ex-
ample, it omits digital signature schemes and key-exchange protocols. After all, its
design prioritizes simplicity and minimal footprint. Hence, some heavyweight ciphers
like AES or SHA may be better for high-bandwidth and high-latency environments -
especially as AES provides higher bit security [aes01].

Furthermore, as a relatively newer algorithm in the cryptographic field, Ascon has not
undergone the same extensive analysis compared to more mature algorithms like AES.
This means that there’s a possibility of future vulnerabilities that are to be discovered
that were not apparent during its initial evaluation.

To conclude, while Ascon excels in lightweight cryptographic applications with its
efficient design, it is still best viewed as a complement rather than a replacement
for other well-established algorithms like AES. Hence, the choice between Ascon and
other heavier ciphers should be made with consideration of the specific constraints and
requirements of the environment.

23

A Appendix

The acronyms and terms that are used are referenced from the official Ascon publica-
tion [asc24] this paper is based on.

B Acronyms

Acronym Definition

AD Associated Data

AE Authenticated Encryption

AEAD Authenticated Encryption with Associated Data
AES Advanced Encryption Standard

NIST National Institute of Standards and Technology
SHA Secure Hash Algorithm

SPN Substitution-Permutation Network

XOF eXtendable-Output Function

XOR Exclusive OR

Table 3: Acronyms

24

C Terms

Term

Definition

associated data

bit

bit string
digest

eXtendable Out-
put Function
(XOF)

hash function

message

nonce
rate
secret key

truncation

Input data that is authenticated, but not encrypted.

A binary digit, 0 or 1. In this standard bits are indicated in the
Courier New font.

A finite, ordered sequence of bits.
Hash value.

A function on bit strings in which the output can be extended to
any desired length.

A mathematical function that maps a string of arbitrary length to
a fixed-length string.

Input to the hash function.

An input value to the authenticated encryption algorithm that is
used only once for encryption performed under a given key.

The number of input bits processed or output bits generated per
invocation of the underlying permutation.

A cryptographic key used by a secret-key (i.e., symmetric) cryp-
tographic algorithm and that is not made public.

A process that shortens an input bitstring, preserving only a sub-
string of a specified length.

Table 4: Acronyms

25

D Notations

Notation

Definition

TSTHEHNNDOD YRR 2 X

128-bit secret key

128-bit nonce

Associated data

ith block of associated data A
Plaintext

1th block of plaintext P
Ciphertext

1th block of ciphertext C
Customization string

1th block of customization string Z
128-bit authentication tag
64-bit constant initial value

Error message to indicate that the verification of authenticated ciphertext
failed

M Message

M; 1th block of message M

H Hash value

H; 1th block of hash value H

S 320-bit internal state of the underlying permutation

So,---,51 The five 64-bit words of the internal state S, where S =Sy || Sy || -+« || Sa

s(i,7) jth bit of S;, for 0<i<4,0<j <63

Si[7] jth byte of state word S;, for 0<1<4,0<5<7

A Length of the truncated tag in bits

r The rate of an algorithm

Ci The constant value for round 7 of the Ascon permutation

po,ps,pr, Constant-addition, substitution, and linear layers of the round function p
Table 5: Notation used throughout the cryptographic algorithm specification

26

E Basic Operations and Functions

Functions

Definition

{0,1}~
{0, 1}
08

By
XY
T Xy
T+y
r-y
[y

x mod y
[]

2]
feyg

O]

2]

X >>1
X <1

€T ==

The set of all finite bit strings, including the empty string
The set of all bit strings of length s

When s > 0, the bit string of s consecutive 0s. When s = 0, it is the empty
string.

Length of the bitstring X in bits

Concatenation of bitstrings X and Y

Multiplication of integers x and y

Addition of integers x and y

Subtraction of integers x and y

Division of integer x by non-zero integer y

Remainder in integer division of x by y

The smallest integer greater than or equal to real number x
The largest integer less than or equal to real number x
Composition of functions f and g, i.e., f(g(z))

Bitwise AND operation

Bitwise XOR operation

Right rotation (circular shift) of 64-bit word X by i bits
Left shift of X by 4 bits

Substring of X from index 7 to 7, inclusive. If ¢ > j, result is empty string.
If i+ = 7, result is a single bit.

Boolean equality check; true if x equals y, false otherwise

Table 6: Functions and operations used in the specification

F Auxiliary Functions

Auxiliary functions are essential components of the Ascon algorithm and act as core
components in its permutation and processing steps. Two such functions are used
throughout the specification: the parse function and the pad function.

F.1 parse(X, r)

The parse function (Algorithm 6) is used to divide an input bitstring X into blocks
with a fixed size r. This is necessary because Ascon processes data in blocks, and
splitting the input accordingly ensures that the data gets processed consistently. The

27

function returns all full-size blocks, as well as a final partial block containing any
leftover bits that do not fit into the fixed size r.

Algorithm 6 parse(X, r)
Input: bitstring X, rate r L
Output: bitstrings X, ..., X1, Xy

1: £« l@J > Compute how many full chunks of size r fit into X
2: fori=0to ¢-1do

3: X;< X[ixr:(i+1)xr-1] > Extract the i-th chunk of r bits
4: end for

50 Xy« X[0xr:|X|-1] > Get the remaining bits that don’t form a full chunk
6: return Xo,..., Xo1, Xy > Return all full chunks and the leftover bits

Example: Let X =1100110010101110 (16 bits), and let r = 6. Then:

X, =110011
X, = 001010
X, =1110

F.2 pad(X, r)

The pad function (Algorithm 7) ensures that the bitstring X is extended so that its
total length becomes a multiple of the block size r. This is done by appending a single
‘1° bit followed by the minimum number of ‘0° bits required to reach the desired block
size r — this is required in Ascon for proper block processing.

Algorithm 7 pad(X, r)
Input: bitstring X, rate r
Output: padded bitstring X'
1: j < (-|X|=1) mod r > Compute how many zeros are needed to make the length
divisible by r after adding a 1
20 X'« X |10 > Append a single 1 bit and then j zero bits
3: return X’ > Return the padded bitstring

Example: Let X =11001100101 (11 bits), and let r = 8. We compute j:
j=(-11-1)mod 8 =-12mod 8 =4

So:
X’ =1100110010110000

Now, |X’| = 16, which is divisible by 8.

G Determination of the Initial Values

Each Ascon algorithm mentioned in this paper has a fixed 64-bit Initial Value IV
specified as:

28

Ascon Variant | Initial Value (IV)

Ascon-AEAD128 | 0x00001000808c0001
Ascon-Hash256 | 0x0000080100cc0002
Ascon-XOF128 0x0000080000cc0003
Ascon-CXOF128 | 0x0000080000cc0004

Table 7: Initial values (IVs) for different Ascon variants

References

[aes01]

[asc24]

[crat94]

[nist17]
[res23]

[shs15)]

[spngl2]

National Institute of Standards and Technology. Advanced Encryption Stan-
dard (AES). Tech. rep. Federal Information Processing Standards Publica-
tion 197. U.S. Department of Commerce, 2001. DOI: 10.6028/NIST.FIPS.
197-updl. URL: https://doi.org/10.6028/NIST.FIPS.197-updl.

Meltem Sonmez Turanet al. Ascon-Based Lightweight Cryptography Stan-
dards for Constrained Devices. Tech. rep. NIST Special Publication 800-232
(Initial Public Draft). National Institute of Standards and Technology, 2024.
DOIL: 10.6028/NIST.SP.800-232.ipd. URL: https://doi.org/10.6028/
NIST.SP.800-232.1ipd.

Eli Biham. New Types of Cryptanalytic Attacks Using Related Keys. Tech.
rep. 1994. por: 10.1007/BF00203965. URL: https://doi.org/10.1007/
BF00203965.

NIST. Finalists - lightweight cryptography. 2017. URL: https://csrc.nist.
gov/projects/lightweight-cryptography/finalists.

Ascon Team. Ascon — Resources. https ://ascon . isec . tugraz . at/
resources.html. Accessed: 2025-07-30. 2023.

National Institute of Standards and Technology. Secure Hash Standard (SHS).
Tech. rep. Federal Information Processing Standards Publication 180-4.

Gaithersburg, MD: U.S. Department of Commerce, 2015. DOI: 10.6028/

NIST.FIPS.180-4. URL: https://doi.org/10.6028/NIST.FIPS.180-4.

Guido Bertoni et al. “Duplexing the Sponge: Single-Pass Authenticated
Encryption and Other Applications”. In: Selected Areas in Cryptography
(SAC 2011). Vol. 7118. Lecture Notes in Computer Science. Springer, 2012,
pp. 320-337. DOI: 10.1007/978-3-642-28496-0_19. URL: https://doi.
org/10.1007/978-3-642-28496-0_19.

29

https://doi.org/10.6028/NIST.FIPS.197-upd1
https://doi.org/10.6028/NIST.FIPS.197-upd1
https://doi.org/10.6028/NIST.FIPS.197-upd1
https://doi.org/10.6028/NIST.SP.800-232.ipd
https://doi.org/10.6028/NIST.SP.800-232.ipd
https://doi.org/10.6028/NIST.SP.800-232.ipd
https://doi.org/10.1007/BF00203965
https://doi.org/10.1007/BF00203965
https://doi.org/10.1007/BF00203965
https://csrc.nist.gov/projects/lightweight-cryptography/finalists
https://csrc.nist.gov/projects/lightweight-cryptography/finalists
https://ascon.isec.tugraz.at/resources.html
https://ascon.isec.tugraz.at/resources.html
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.1007/978-3-642-28496-0_19
https://doi.org/10.1007/978-3-642-28496-0_19
https://doi.org/10.1007/978-3-642-28496-0_19

	Introduction
	Ascon Permutations
	Internal State
	Constant-Addition Layer pC
	Substitution Layer pS
	Linear Diffusion Layer pL

	Authenticated Encryption Scheme: Ascon-AEAD128
	Specification of Ascon-AEAD128
	Encryption
	Initialization
	Associated Data Processing
	Plaintext Processing
	Finalization

	Decryption
	Ciphertext Processing
	Finalization

	Hash and Extendable Output Functions
	Specification of Ascon-Hash256
	Initialization
	Message Absorption
	Hash Squeezing

	Specification of Ascon-XOF128
	Initialization and Message Absorption
	Hash Squeezing

	Specification of Ascon-CXOF128
	Customization

	Conclusion
	Appendix
	Acronyms
	Terms
	Notations
	Basic Operations and Functions
	Auxiliary Functions
	parse(X, r)
	pad(X, r)

	Determination of the Initial Values

